Text Cleaning
import pandas as pd
import re
import nltk
from bs4 import BeautifulSoup
from itertools import groupby
import nltk
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.tokenize import sent_tokenize, word_tokenize
ps = PorterStemmer()
nltk.download('stopwords')
stopwords = list(set(stopwords.words('english')))
from nltk.stem import WordNetLemmatizer
lemmatizer = WordNetLemmatizer()
nltk.download('wordnet')
from tqdm.notebook import tqdm
tqdm.pandas()
!pip install ekphrasis
from ekphrasis.classes.preprocessor import TextPreProcessor
from ekphrasis.classes.tokenizer import SocialTokenizer
from ekphrasis.dicts.emoticons import emoticons
text_processor = TextPreProcessor(
normalize=['url', 'email', 'percent', 'money', 'phone',
'user', 'time', 'date', 'number'],
# annotate={"hashtag", "allcaps", "elongated", "repeated",
# 'emphasis', 'censored'},
fix_html=True,
segmenter="twitter",
corrector="twitter",
unpack_hashtags=True,
unpack_contractions=True,
spell_correct_elong=False,
tokenizer=SocialTokenizer(lowercase=False).tokenize,
dicts=[emoticons]
)
!pip install autocorrect
import autocorrect
speller = autocorrect.Speller()
!pip install clean-text[gpl]
from cleantext import clean
def clean_text(text):
if type(text) is float:
return ' '
text = ' ' + text + ' '
text = BeautifulSoup(text, "lxml").text
text = re.sub(r"http[s]?://\S+", "", text)
# noise removal
rules = [
{r'>\s+': u'>'}, # remove spaces after a tag opens or closes
{r'\s+': u' '}, # replace consecutive spaces
{r'\s*<br\s*/?>\s*': u'\n'}, # newline after a <br>
{r'</(div)\s*>\s*': u'\n'}, # newline after </p> and </div> and <h1/>...
{r'</(p|h\d)\s*>\s*': u'\n\n'}, # newline after </p> and </div> and <h1/>...
{r'<head>.*<\s*(/head|body)[^>]*>': u''}, # remove <head> to </head>
{r'<a\s+href="([^"]+)"[^>]*>.*</a>': r'\1'}, # show links instead of texts
{r'[ \t]*<[^<]*?/?>': u''}, # remove remaining tags
{r'^\s+': u''} # remove spaces at the beginning
]
for rule in rules:
for (k, v) in rule.items():
regex = re.compile(k)
text = regex.sub(v, text)
text = text.rstrip()
text = re.sub(r"\s+", " ", text)
text = re.sub(r"#", "", text)
text = re.sub(r'<.*?>', ' ', text)
text = re.sub(r'\{[^{}]*\}', ' ', text)
text = re.sub(r'\s', ' ', text)
text = ' '.join(text_processor.pre_process_doc(text))
text = ' '.join(text.split())
text = re.sub(r'(?:\d+[a-zA-Z]+|[a-zA-Z]+\d+)', '<hash>', text)
text = re.sub(r'\b\w{1,2}\b', '', text)
text = ' '.join([k for k,v in groupby(text.split())])
text = text.lower()
text = clean(text,
fix_unicode=True, # fix various unicode errors
to_ascii=True, # transliterate to closest ASCII representation
lower=True, # lowercase text
no_line_breaks=False, # fully strip line breaks as opposed to only normalizing them
no_urls=True, # replace all URLs with a special token
no_emails=True, # replace all email addresses with a special token
no_phone_numbers=True, # replace all phone numbers with a special token
no_numbers=True, # replace all numbers with a special token
no_digits=True, # replace all digits with a special token
no_currency_symbols=True, # replace all currency symbols with a special token
no_punct=True, # remove punctuations
replace_with_punct="", # instead of removing punctuations you may replace them
replace_with_url="<URL>",
replace_with_email="<EMAIL>",
replace_with_phone_number="<PHONE>",
replace_with_number="<NUMBER>",
replace_with_digit="0",
replace_with_currency_symbol="<CUR>",
lang="en" # set to 'de' for German special handling
)
text = re.sub(r'[^a-z<> ]', ' ', text)
text = re.sub(r'\b[a-z]\b', ' ', text)
# text = speller.autocorrect_sentence(text)
# text = ' '.join([ps.stem(w) for w in text.split()])
# text = ' '.join([lemmatizer.lemmatize(w, 'v') for w in text.split()])
# text = ' '.join([w for w in text.split() if not w in stopwords])
# seen = set()
# seen_add = seen.add
# text = ' '.join([x for x in text.split() if not (x in seen or seen_add(x))])
text = ' '.join(text.split())
return text